K	
Courses » Fundamentals of Acoustics	
Course outline	Week 5 Assignment 🖍
How to access the portal?	The due date for submitting this assignment has passed. Due on 2017-02-28, 23:59 IST. Submitted assignment
Week 01: Introduction and Terminology	 1)Unit of specific acoustic impedance is: 1 poi N S/m²2. Pa.S/m³3. Pa.S/m. 2)Which of the following thermodynamic process accurately captures the behavior of gas when an acoustic wave passes through it? Isobaric process. Isochoric process. Isothermal process. Adiabatic process. Adiabatic process. 3)A resistor (R) is connected across the terminals of a voltage source v(t). 1 poi What will happen when an inductor (L) is added in parallel to this resistor as shown in figure?
Week 02: Concept Review	
Week 03: Wave equation	
week 04: Transmission line equations	
Week 05: 1-D Waves • Lesson 1:	
Instantaneous Power Lesson 2: Instantaneous Power in a	

Lesson 3:

5/15/2017

Power Factor, and Acoustic Power

- Lesson 4: Power Flow into an Infinitely Long Tube
- Lesson 5: Point Sources of Sound
- Lesson 6: Relations for Outward Travelling Spherical Acoustic Wave
- Quiz:Week 5 Assignment
- Week 5 Assignment Solution

Week 06: Power and spherical waves

Week 07: Spherical waves and interference

Week 08: Directivity and mufflers

Week 09: Sound in rooms

Week 10: Reverb time and FFT

Week 11: Weighting and loudness

Week 12: Miscellaneous

Fundamentals of Acoustics - - Unit 6 - Week 05: 1-D Waves

Instantaneous power in the circuit will remain the same.

- Power factor of the system will reduce.
- Current, I (t) will reduce.
- Power dissipated in the network will reduce.

4) In the L-R circuit shown below, resistance R=100 Ω and inductance, L=1/(2 π)**1** *point* H. Find the instantaneous power P(t) when voltage, v(t)=10Cos (120 π t) is applied as shown below.

- 0.5 + 1.707 Cos (240πt-π/4)
 0.5 + 0.707 Cos (240πt-π/4)
- 0.5 + 1.707 Sin (240 π t- π /4)
- 0.5 + 0.707 Cos (240πt-π/6)

5) Which of the following statement is true about power factor of an AC **1 point** electrical power system.

 $\hfill \bigcirc$ Power factor is the ratio of real power flowing to the load to the apparent power in the circuit.

 $\hfill \bigcirc$ Power factor is the ratio of apparent power in the circuit to real power flowing to the load.

- Power factor = 1, means the system is inductive.
- Value of power factor is in the open interval (0,1).

6)Scalar product of instantaneous acoustic pressure and instantaneous particle**1** *point* velocity will result in _____.

- Instantaneous power.
- Instantaneous energy.
- Instantaneous power per unit area.
- Instantaneous energy per unit area.

7) While buying a house hold equipment, which type of equipment will draw **1** point least amount of current?

Equipment with pure resistor of 10 Ohms in the circuit.

- Equipment with an inductor and a resistor of 10 ohms in parallel.
- Equipment with a capacitor and a resistor of 10 ohms in parallel.
- Options b, and c are correct.

8)For the closed tube shown below, a reciprocating sound source excites the **1** point medium inside it at x=-1. For such a system, _____.

Fundamentals of Acoustics - - Unit 6 - Week 05: 1-D Waves

Resistive part of specific acoustic impedance at point A is zero.

Reactive part of specific acoustic impedance at point A is zero.

Total power dissipated by sound source into the system over a cycle is not zero.

None of the options is correct.

Powered by

https://onlinecourses.nptel.ac.in/noc17_me13/unit?unit=12&assessment=49

End